Центральная Научная Библиотека  
Главная
 
Новости
 
Разделы
 
Работы
 
Контакты
 
E-mail
 
  Главная    

 

  Поиск:  

Меню 

· Главная
· Биржевое дело
· Военное дело и   гражданская оборона
· Геодезия
· Естествознание
· Искусство и культура
· Краеведение и   этнография
· Культурология
· Международное   публичное право
· Менеджмент и трудовые   отношения
· Оккультизм и уфология
· Религия и мифология
· Теория государства и   права
· Транспорт
· Экономика и   экономическая теория
· Военная кафедра
· Авиация и космонавтика
· Административное право
· Арбитражный процесс
· Архитектура
· Астрономия
· Банковское дело
· Безопасность   жизнедеятельности
· Биржевое дело
· Ботаника и сельское   хозяйство
· Бухгалтерский учет и   аудит
· Валютные отношения
· Ветеринария




Построение эконометрической модели

Построение эконометрической модели

5

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ДИСТАНЦИОННОГО ОБРАЗОВАНИЯ

Кафедра бухгалтерского учета и аудита

Контрольная работа

по дисциплине «Эконометрика»

Исполнитель:

студентка группы ЭУВ 15141 УК

Мурсалимова Э.С.

Проверил:

Касьянов В. А.

Екатеринбург 2006

1. Исходные данные:

год

годовые потребности свинины, кг

оптовая цена за кг, $

доход на душу населения, $

расходы по обработке мяса в %

90

60

5

1300

60

91

62

4

1300

56

92

65

4,2

1500

56

93

62

5

1600

63

94

66

3,8

1800

50

2. Задание.

Построить модель вида:

3. Решение.

Общий вид искомой модели:

,

a11, a22, b12, b21 - структурные коэффициенты.

Е1, Е2 - погрешность.

Пусть Е1=0 и Е2=0.

Таким образом, решение сводится к нахождению соответствующих структурных коэффициентов a11, a22, b12, b21.

Необходимо отметить, что искомая модель представляет собой систему взаимосвязанных уравнений. Ранг матрицы системы равен максимальному числу линейно - независимых переменных. В нашей системе таковыми являются x1, x2. Достаточным условием индентифицируемости системы является факт, что ранг матрицы системы не менее числа эндогенных переменных системы без единицы. Ранг матрицы равен 2, а число эндогенных переменных также 2 (у1, у2). Соответственно достаточное условие индентифицируемости системы выполняется. В связи с этим, для решения задачи необходимо применять косвенный метод наименьших квадратов.

Составим приведённую форму модели:

Выразим переменные через отклонения от средних уровней.

y1

y2

х1

х2

y1*x1

x12

x1*x2

y1*x2

x22

y2*x1

y2*x2

-3

0,6

-200

3

600

40000

-600

-9

9

-120

1,8

-1

-0,4

-200

-1

200

40000

200

1

1

80

0,4

2

-0,2

0

-1

0

0

0

-2

1

0

0,2

-1

0,6

100

6

-100

10000

600

-6

36

60

3,6

3

-0,6

300

-7

900

90000

-2100

-21

49

-180

4,2

0

0

0

0

1600

180000

-1900

-37

96

-160

10,2

Решим систему в общем виде:

Итак первое уравнение имеет вид:

Итак,

Приведем эту систему к виду

В общем виде:

Оба уравнения по структуре одинаковы, следовательно для у2 просто меняем a на b, также при этом меняются индексы.

Искомая модель:






Информация 







© Центральная Научная Библиотека