Расчеты грузооборота и дальности пробега
9
1. Ранжируем ряд «грузооборот», получаем:
|
419 | |
422 | |
423 | |
428 | |
431 | |
431 | |
438 | |
910 | |
1045 | |
2519 | |
2533 | |
2595 | |
2600 | |
2700 | |
2700 | |
2858 | |
2891 | |
2902 | |
3320 | |
3365 | |
3370 | |
3380 | |
3904 | |
4068 | |
4946 | |
5140 | |
5673 | |
6440 | |
9386 | |
15300 | |
|
2. Составляем интервальный вариационный ряд, для этого сначала найдём количество интервалов по формуле Стэрджесса:
m=1+3,322 lg N, где N - количество элементов изучаемой совокупности, получаем:
m=1+3,322 lg 30=5,9, округляем и получаем 6 интегралов.
3. найдем размер интервала:
; получаем:
тыс. км.
4. составляем группировку, получим следующий интервальный ряд:
|
№ | | fi | |
1 | 419-2919 | 18 | |
2 | 2919-5419 | 8 | |
3 | 5419-7919 | 2 | |
4 | 7919-10419 | 1 | |
5 | 10419-12919 | 0 | |
6 | 12919-15419 | 1 | |
| ----- | 30 | |
|
Группа № 5 оказалась пустой, а в группе № 1 сосредоточена большая часть изучаемых элементов, следовательно, построенный интервальный вариационный ряд не может применяться для дальнейшего анализа. Составим неравно интервальный вариационный ряд.
Получим: (см. табл. столбец № 1,2.)
|
№ | | fi | Xi | fi' | Xi fi | Xi2 fi | | | | |
1 | 415-450 | 7 | 432,5 | 7 | 3027,5 | 1309393,75 | 77626185,05 | -2,58502E+11 | 8,60832E+14 | |
2 | 450-1050 | 2 | 750 | 9 | 1500 | 1125000 | 18151316,68 | -54682354110 | 1,64735E+14 | |
3 | 1050-2650 | 4 | 1850 | 13 | 7400 | 13690000 | 14631900,03 | -27984728128 | 5,35231E+13 | |
4 | 2650-3350 | 6 | 3000 | 19 | 18000 | 54000000 | 3489200,042 | -2660805798 | 2,02909E+12 | |
5 | 3350-4000 | 4 | 3675 | 23 | 14700 | 54022500 | 30683,36111 | -2687351,044 | 235367162,3 | |
6 | 4000-15500 | 7 | 9750 | 30 | 68250 | 665437500 | 250944108,4 | 1,50251E+12 | 8,99614E+15 | |
|
Для построенного вариационного ряда рассчитать:
1. среднюю арифметическую взвешенную:
3762,6 тыс. км;
Вывод: среднее количество перевозимого груза по анализируемым 30 рейсам составляет 3762,583 тыс. км.
2. Моду:
в данном случае, интервальный ряд содержит 2 (два) интервала, которым соответствует самая большая частота, в данном случае можно найти 2 моды:
- соответствует 1 интервалу,
- соответствует 6 интервалу,
=415+35*=435,417 тыс. км - это число лежит в 1 интервале;
=тыс. км - это число лежит в 6 интервале;
Вывод: в данном случае распределение является бимодальным и в большинстве рейсов грузооборот близок либо к 435,417 тыс. км, либо к 7450 тыс. км.
3. Медиану:
Найдём ее по формуле:
.
В данном случае, медианным является интервал № 4, следовательно:
тыс. км,
Значит, для рассматриваемого ряда, грузооборот в первую половину рейсов меньше, чем 2883,3333 тыс. км, а во вторую, больше, чем 2883,3333 тыс. км.
4. Среднеквадратическое отклонение и коэффициент вариации:
Для нахождения СКО сначала необходимо вычислить дисперсию:
, получим 12162446,45
СКО 3487,4670 тыс ткм.
Коэффициент вариации найдем по формуле:
, получим
Вывод: т.к. коэффициент вариации получился больше 33.3% , то рассматриваемая совокупность является неоднородной и найденная средняя арифметическая не является типичной для рассматриваемой совокупности и не может характеризовать центральную меру тенденции.
5. Коэффициент ассиметрии, найдем по формуле:
Центральный момент найдем по формуле:
38622489882,6573
получим 0,9106
вывод: т.к. А больше нуля, то ассиметрия правосторонняя.
6. Эксцесс распределения найдем по формуле:
Найдем:
, получим 335908491904946,6667
2,2708 - 3= - 0,7292
Вывод: т.к. Е < 0, то распределение плосковершинное.
7. Ранжируем ряд «дальность пробега», получаем:
|
156 | |
312 | |
312 | |
312 | |
312 | |
312 | |
312 | |
380 | |
420 | |
1136 | |
1243 | |
1243 | |
1243 | |
1407 | |
1513 | |
1513 | |
1513 | |
1688 | |
1688 | |
1706 | |
1845 | |
1866 | |
2119 | |
2119 | |
2119 | |
2270 | |
2771 | |
|
8. Составляем интервальный вариационный ряд, для этого сначала найдём количество интервалов по формуле Стэрджесса:
m=1+3,322 lg N, где N - количество элементов изучаемой совокупности, получаем:
m=1+3,322 lg 30=5,9, округляем и получаем 6 интегралов.
8. Найдем размер интервала:
; получаем:
км
4. Составляем группировку, получим следующий интервальный ряд:
|
№ | | fi | |
1 | 156-1906 | 22 | |
2 | 1906-3656 | 5 | |
3 | 3656-5406 | 1 | |
4 | 5406-7156 | 1 | |
5 | 7156-8906 | 0 | |
6 | 8906-10656 | 1 | |
| ----- | 30 | |
|
Группа № 5 оказалась пустой, а в группе № 1 сосредоточена большая часть изучаемых элементов, следовательно, построенный интервальный вариационный ряд не может применяться для дальнейшего анализа. Составим неравно интервальный вариационный ряд.
Получим: (см. табл. столбец № 1,2.)
|
№ | | fi | Xi | fi' | Xi fi | Xi2 fi | | | | |
1 | 155-355 | 7 | 255 | 7 | 1785 | 455175,00 | 21272443,94 | -37083187894,05 | 64645267296297,20 | |
2 | 355-710 | 2 | 532,5 | 9 | 1065 | 567112,50 | 4296846,125 | -6298102208 | 9231443310963,76 | |
3 | 710-1420 | 5 | 1065 | 14 | 5325 | 5671125,00 | 4354777,813 | -4064096394 | 3792817959248,46 | |
4 | 1420-1850 | 7 | 1635 | 21 | 11445 | 18712575,00 | 923653,9375 | -335517292,8 | 121876656608,47 | |
5 | 1850-2220 | 4 | 2035 | 25 | 8140 | 16564900,00 | 5402,25 | 198532,6875 | 7296076,27 | |
6 | 2220-10655 | 5 | 6437,5 | 30 | 32187,5 | 207207031,25 | 98534702,81 | 437420179460,39 | 1941817531669540,00 | |
| ----- | 30 | --- | --- | 59947,5 | 249177918,75 | 129387826,88 | 389639474205,00 | 2019608944188730,00 | |
|
Для построенного вариационного ряда рассчитать:
3. среднюю арифметическую взвешенную:
1998,25 км;
Вывод: средняя дальность пробега по анализируемым 30 рейсам составляет 1998,25 км.
4. Моду:
в данном случае, интервальный ряд содержит 2 (два) интервала, которым соответствует самая большая частота, в данном случае можно найти 2 моды:
- соответствует 1 интервалу,
- соответствует 4 интервалу,
=155+200*=271,6667 км - это число лежит в 1 интервале;
=1420+430*=1592 км - это число лежит в 4 интервале;
Вывод: в данном случае распределение является бимодальным и в большинстве рейсов дальность пробега близка либо к 271,6667 км, либо к 1592 км.
3. Медиану:
Найдём ее по формуле:
.
В данном случае, медианным является интервал № 5, следовательно:
1911,6667 км,
Значит, для рассматриваемого ряда, дальность пробега в первую половину рейсов меньше, чем 1911,6667 км, а во вторую, больше, чем 1911,6667 км.
9. Среднеквадратическое отклонение и коэффициент вариации:
Для нахождения СКО сначала необходимо вычислить дисперсию:
, получим 4312927,5627
СКО 2076,7590 км.
Коэффициент вариации найдем по формуле:
, получим 103,93%
Вывод: т.к. коэффициент вариации получился больше 33.3%, то рассматриваемая совокупность является неоднородной и найденная средняя арифметическая не является типичной для рассматриваемой совокупности и не может характеризовать центральную меру тенденции.
10. Коэффициент ассиметрии, найдем по формуле:
Центральный момент найдем по формуле:
12987982473,5
получим 1,4501
вывод: т.к. А больше нуля, то ассиметрия правосторонняя.
11. эксцесс распределения найдем по формуле:
Найдем:
=67320298139624,3333
18601347450834,7615
3,6192- 3= 0,6192
Вывод: т.к. Е > 0, то распределение островершинное.