Центральная Научная Библиотека  
Главная
 
Новости
 
Разделы
 
Работы
 
Контакты
 
E-mail
 
  Главная    

 

  Поиск:  

Меню 

· Главная
· Биржевое дело
· Военное дело и   гражданская оборона
· Геодезия
· Естествознание
· Искусство и культура
· Краеведение и   этнография
· Культурология
· Международное   публичное право
· Менеджмент и трудовые   отношения
· Оккультизм и уфология
· Религия и мифология
· Теория государства и   права
· Транспорт
· Экономика и   экономическая теория
· Военная кафедра
· Авиация и космонавтика
· Административное право
· Арбитражный процесс
· Архитектура
· Астрономия
· Банковское дело
· Безопасность   жизнедеятельности
· Биржевое дело
· Ботаника и сельское   хозяйство
· Бухгалтерский учет и   аудит
· Валютные отношения
· Ветеринария




Способы измерения влияния факторов в детерминированном анализе

Способы измерения влияния факторов в детерминированном анализе

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра экономики

РЕФЕРАТ

на тему:

«Способы измерения влияния факторов в детерминированном анализе»

МИНСК, 2008

Если между факторными и результативным показателем существует строгая функциональная зависимость, то для определения влияния отдельных факторов можно использовать:

1. приемы элиминирования -- последовательного выделения влияния одного фактора и исключения влияния остальных факторов: способ цепной подстановки, индексный метод, метод абсолютных и относительных разниц;

2. прием пропорционального деления или долевого участия;

3. интегральный способ;

4. способ логарифмирования.

1. Способ цепной подстановки

Используется во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных.

Подстановкой называется замена базисной величины (плановой или фактической за прошлые периоды) каждого факторного показателя в составе результативного на фактическую в отчетном периоде. В результате такой замены рассчитывается один или несколько условных результативных показателей, называемых еще подстановками. Данный условный показатель сравнивается с плановым (базовым) или другим условным результативным показателем. Результат сравнения показывает величину влияния измененного фактора, так как остальные должны быть взяты неизменными.

Следует знать правила применения данного приема.

1. Определяется результативный и факторные показатели.

2. Создается исходная и развитая модель факторной системы. Определяется ее тип.

3. Факторные показатели классифицируются на количественные и качественные, главные и второстепенные.

4. Определяется общее количество используемых для расчета результативных показателей. Оно равно количеству факторов .

5. Определяется количество условных результативных показателей. Оно равно количеству факторов .

6. При расчете условных результативных показателей в начале заменяются количественные факторы, а потом качественные. Если имеется несколько количественных или качественных факторов, то сначала заменяются главные, а затем второстепенные, зависящие от них.

7.Для правильного определения направления влияния фактора (+,-) надо из результативного показателя, в котором рассчитываемый фактор взят при фактических условиях, вычесть результативный показатель, в котором он взят при плановых условиях.

Рассмотрим алгоритмы и последовательность расчетов для различных типов модели.

Обозначим: результативный показатель -; факторные показатели: а,b,c; из них: а - главный количественный; b - количественный, зависящий от а; c - качественный.

Исходная мультипликативная модель: .

Поскольку надо рассчитать влияние 3_х факторов, используются 4 результативных показателя, из них 2 условных.

Плановый результативный показатель

или ;

Первый условный результативный показатель (первая подстановка):

или ;

Второй условный результативный показатель (вторая подстановка):

или ;

Фактический результативный показатель:

или .

Общее (абсолютное) отклонение результативного показателя

или

.

Общее (абсолютное) отклонение результативного показателя за счет изменения факторов a, b, c.

или ;

или ;

или .

Алгебраическая сумма влияния факторов должна быть равна общему приросту результативного показателя или . Отсутствие такого равенства свидетельствует о допущенных ошибках в расчетах.

Кратные модели: ;

; ;

; ;

; ;

.

Cмешанные модели: ; ;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;.

Аналогичным образом рассчитывают влияние факторов и по другим моделям смешанного типа.

2. Индексный метод

Основан на относительных показателях динамики, выражающих отношение фактического уровня анализируемого показателя в отчетном периоде к его уровню в плановом (базисном) периоде.

Используется для определения влияния факторов на результативный показатель только в мультипликативных моделях.

Исходная модель .

Общий индекс результативного показателя:

.

Относительное изменение результативного показателя за счет факторов

a, b, c:

; ; .

Абсолютное изменение результативного показателя за счет факторов a, b, c:

;

;

.

3. Способ абсолютных разниц

Применяется в мультипликативных моделях и смешанных моделях типа .

При его использовании величина влияния факторов на изменение результативного показателя рассчитывается умножением абсолютного прироста исследуемого фактора на плановую (базовую) величину факторов, которые находятся в модели справа от него, и на фактическую величину факторов, расположенных слева от него.

Рассмотрим алгоритмы расчета:

для мультипликативной факторной модели типа:

; ;

; ;

;

для смешанной модели типа .

; ; ; .

4. Способ относительных разниц

Применяется в мультипликативных моделях. Есть несколько вариантов расчета влияния факторов на изменение результативного показателя.

Первый способ: используются относительные отклонения факторных показателей, выраженные в процентах.

Исходная модель:

; ; ;

Тогда ; ;

; .

Второй и третий способы: используются коэффициенты и индексы изменения факторных показателей.

; ;

.

Тогда ;

;

;

.

Для третьего способа можно использовать еще и такой метод расчета влияния факторов на результативный показатель

; ; .

Способ четыре: прием процентных разностей.

Исходная модель

где ; ; ; - процент выполнения плана соответственно по факторам “a”, “”, “” и по результативному показателю.

5. Способ пропорционального деления или долевого участия

Сущность способа пропорционального деления состоит в пропорциональном делении прироста результативного показателя по факторам его обусловившим, а долевого участия -- в определении доли участия каждого фактора в общем приросте результативного показателя.

Эти способы применяются для аддитивных, мультипликативных, кратных и смешанных моделей типа .

Для определения влияния отдельных факторов на прирост результативного показателя рассчитывается один из следующих коэффициентов:

1) коэффициент пропорционального деления , как отношение общего относительного прироста результативного показателя к сумме относительных изменений факторных показателей.

При аддитивных типах моделей рассчитывается один коэффициент пропорциональности, а при других типах моделей -- он определяется для каждого порядка факторов в отдельности.

При исходной модели ,

(изменения всех составляющих взяты в относительных единицах).

;

; ;

.

2) коэффициент долевого участия , который определяется как отношение относительного прироста i_го факторного показателя к сумме относительных изменений факторных показателей.

Например, для исходной факторной модели , коэффициент долевого участия для фактора «а»:

.

Тогда для приведенной исходной мультипликативной модели:

;

;

;

.

Переход от относительных единиц к абсолютным осуществляется по формулам:

; .

Если взаимосвязь факторов двух уровневая (n-уровневая), то необходимо рассчитывать коэффициент пропорционального деления для каждого уровня, а коэффициент долевого участия для каждого факторного показателя соответствующего уровня.

6. Интегральный способ

Для приемов элиминирования характерны следующие недостатки:

величина влияния фактора на изменение результативного показателя зависит от места расположения фактора в детерминированной модели;

дополнительный прирост результативного показателя, полученный от совместного взаимодействия факторов, присоединяется к последнему фактору.

Интегральный метод не имеет этих недостатков. Величина влияния фактора на изменение результативного показателя не зависит от места расположения фактора в детерминированной модели. Дополнительный прирост от совместного взаимодействия факторов, распределяется между ними поровну.

Метод применяется для измерения влияния факторов в мультипликативных, кратных и смешанных моделях типа .

Для мультипликативных моделей:

Исходная модель .

; .

Исходная модель

; ;

.

Исходная модель

Кратная модель ; ; .

Смешанная модель типа: ; ;

;

;

;

;

;

.

7. Способ логарифмирования

Применяется для измерения влияния факторов в мультипликативных моделях.

Результат расчета влияния факторов на результативный показатель при этом способе не зависит от места расположения факторов в модели. Дополнительный прирост от совместного взаимодействия факторов распределяется между ними пропорционально доли изолированного влияния каждого фактора на уровень результативного показателя.

Исходная модель

; ; .

ЛИТЕРАТУРА

Экономика предприятия (фирмы): Учебник / Под. ред. проф. О.И.Волкова. - М.: ИНФРА-М, 2005. - 601 с.

Грузинов В.П., Грибов В.Д. Экономика предприятия: Учеб. пособие - М.: Финансы и статистика, 2005. - 208 с.

Сергеев И.В. Экономика предприятия. Учеб. пособие. - М.: Финансы и статистика, 2005. - 304 с.

Экономика предприятия / Под ред. Е.Л.Кантора. - СПб.: Питер, 2006. - 352 с.






Информация 







© Центральная Научная Библиотека