Статистика в практике
19
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО - ЭКОНОМИЧЕСКИЙ
ИНСТИТУТ ФИЛИАЛ В ГОРОДЕ ТУЛЕ
КАФЕДРА СТАТИСТИКИ
КОНТРОЛЬНАЯ РАБОТА
по дисциплине «Статистика»
ВАРИАНТ 7
Выполнил:
Проверил:
Тула 2007
ИСХОДНЫЕ ДАННЫЕ
Имеются следующие выборочные данные по предприятиям одной из отраслей экономики в отчетном году (выборка 20% - ная механическая):
|
№ пр-я п/п | Средене - списочная численность работников, чел. | Выпуск продукции, млн.руб. | № пр-я п/п | Средене - списочная численность работников, чел. | Выпуск продукции, млн.руб. | |
1 | 159 | 37 | 16 | 137 | 25 | |
2 | 174 | 47 | 17 | 171 | 45 | |
3 | 161 | 40 | 18 | 163 | 41 | |
4 | 197 | 60 | 19 | 145 | 28 | |
5 | 182 | 44 | 20 | 208 | 70 | |
6 | 220 | 64 | 21 | 166 | 39 | |
7 | 245 | 68 | 22 | 156 | 34 | |
8 | 187 | 59 | 23 | 130 | 14 | |
9 | 169 | 43 | 24 | 170 | 46 | |
10 | 179 | 48 | 25 | 175 | 48 | |
11 | 120 | 24 | 26 | 184 | 54 | |
12 | 148 | 36 | 27 | 217 | 74 | |
13 | 190 | 58 | 28 | 189 | 56 | |
14 | 165 | 42 | 29 | 177 | 45 | |
15 | 142 | 30 | 30 | 194 | 61 | |
|
ЗАДАНИЕ 1
По исходным данным:
1. Постройте статистический ряд распределения организаций (предприятий) по признаку среднесписочная численность работников, образовав пять групп с равными интервалами.
2. Постройте графики полученного ряда распределения. Графически определите значения моды и медианы.
3. Рассчитайте характеристики интервального ряда распределения:
· среднюю арифметическую;
· среднее квадратическое отклонение;
· коэффициент вариации;
· моду и медиану.
4. Вычислите среднюю арифметическую по исходным данным, сравните ее с аналогичным показателем, рассчитанным в п.3 для интервального ряда распределения. Объясните причину их расхождения.
Сделайте выводы по результатам выполнения задания.
РЕШЕНИЕ:
1. Статистический ряд распределения представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку. Он характеризует состав (структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности.
Для группировок с равными интервалами величина интервала:
,
где - наибольшее и наименьшее значения признака;
n - число групп.
чел.
В результате получим следующий ряд распределения (табл.1.1):
Таблица 1.1.
|
Интервальный ряд | Дискретный ряд | - количество предприятий внутри i - той группы | % | |
1гр.: 120 - 140 | (120+140)/2=130 | 3 | 10% | |
2гр.: 140 - 160 | (140+160)/2=150 | 5 | 16.7% | |
3гр.: 160 - 180 | (160+180)/2=170 | 11 | 36.7% | |
4гр.: 180 - 200 | (180+200)/2=190 | 7 | 23.3% | |
5гр.: 200 - 220 | (200+220)/2=210 | 4 | 13.3% | |
|
2. Мода - значение признака, наиболее часто встречающееся в изучаемой совокупности. Для дискретных рядов распределения - вариант, имеющий наибольшую частоту.
Медиана - это вариант, который находится в середине вариационного ряда, делящий его на две равные части.
3. Рассчитаем характеристики интервального ряда распределения:
· Средняя арифметическая.
Если значения осредняемого признака заданы в виде интервалов (“от - до”), т.е. интервальных рядов распределения (табл.1.1), то при расчете средней арифметической величины в качестве значений признаков в группах принимаются середины этих интервалов, в результате чего образуется дискретный ряд (табл.1.1). Т.о. средняя арифметическая будет равна:
,
где - средняя численность работников внутри i - той группы;
- количество предприятий внутри i - той группы;
чел.
· Среднее квадратическое отклонение.
Представляет собой корень квадратный из дисперсии. Дисперсия признака представляет собой средний квадрат отклонения вариантов от их средней величины, она вычисляется по формуле:
==526
Среднее квадратическое отклонение показывает, на сколько, в среднем отклоняются конкретные варианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты.
= 23 чел.
· Коэффициент вариации.
13,3%
По величине коэффициента вариации можно судить о степени вариации признаков, а следовательно, об однородности состава совокупности. Совокупность считается количественно однородной, если коэффициент однородности не превышает 33%. Т.о., в рассматриваемом варианте совокупность количественно однородная.
· Мода и медиана.
Для интервальных вариационных рядов распределения мода рассчитывается по формуле:
,
где - мода;
- нижняя граница модального интервала;
- величина модального интервала;
- частота модального интервала;
- частота интервала, предшествующего модальному;
- частота интервала, следующего за модальным.
= 172 чел.
Модальный интервал определяется по наибольшей частоте.
Наибольшее число предприятий - 11 - имеют среднесписочную численность работников в интервале 160 - 180 чел., который и является модальным. Итак, модальным значением среднесписочной численности работников по предприятиям одной из отраслей экономики является численность равная 172 чел. В интервальных рядах распределения медианное значение (поскольку оно делит всю совокупность на две равные по численности части) оказывается в каком - то из интервалов признака . Этот интервал характерен тем, что его кумулятивная частота (накопленная сумма частот)равна или превышает полусумму всех частот ряда.
Значение медианы рассчитывается по формуле:
,
где - медиана;
- нижняя граница медианного интервала;
- величина медианного интервала;
- сумма частот ряда;
- частота медианного интервала;
- сумма накопленных частот ряда, предшествующих медианному интервалу.
Прежде всего, найдем медианный интервал. Таким интервалом будет интервал среднесписочной численности работников 160 - 180 чел., поскольку его кумулятивная частота равна 19(3+5+11), что превышает половину суммы всех частот (30/2=15).
=173 чел.
Полученный результат говорит о том, что из 30 предприятий одной из отраслей экономики 15 предприятий имеют среднесписочную численность работников 173 чел., а 15 предприятий - более.
4. Вычислим среднюю арифметическую по исходным данным.
= 173 чел.
Результат расчетов средней арифметической в п.3 совпадает с результатом расчетов в п.4. Это произошло потому, что при исчислении средней арифметической в интервальном ряде допускается некоторая неточность, поскольку делается предположение о равномерности распределения единиц признака внутри группы. Ошибка будет тем меньше, чем уже интервал и чем больше единиц в интервале. Т.к. интервал в нашей задаче достаточно узкий - 20, а число единиц в интервале достаточно большое, следовательно, ошибка расчетов в п.3 мала, и результаты расчетов п.3 и п.4 совпадают.
ЗАДАНИЕ 2
По исходным данным:
1. Установите наличие и характер связи между признаками среднесписочная численность работников (х - факторный) и выпуском продукции (y - результативный), образовав 5 групп по обоим признакам с равными интервалами, методами:
· аналитической группировки:
· корреляционной таблицы.
2. Измерьте тесноту корреляционной связи между названными признаками с использованием коэффициента детерминации и эмпирического корреляционного отношения.
Сделайте выводы по результатам выполненного задания.
РЕШЕНИЕ
1. Аналитическая группировка.
· Основные этапы проведения аналитической группировки - обоснование и выбор факторного и результативного признаков, подсчет числа единиц в каждой из образованных групп, определение объема варьирующих признаков в пределах созданных групп, а также исчисление средних размеров результативного показателя. Результаты группировки оформляются в таблице. Установим наличие и характер связи между величиной среднесписочной численности работников и выпуском продукции методом аналитической группировки по данным таблицы исходных данных.
Вначале строим рабочую таблицу (табл.2.1).
Таблица 2.1.
Распределение предприятий по среднесписочной численности работников.
|
№ п.п | Группы предприятий по среднесписочной численности работников | № пред- прия- тия | Среднесписочная численность работников, чел. | Объем выпускаемой продукции, млн.руб. | |
А | Б | 1 | 2 | 3 | |
I | 120 - 140 | 11 23 16 | 120 130 137 | 24 14 25 | |
Итого | 3 | 387 | 63 | |
II | 140 - 160 | 15 19 12 22 1 | 142 145 148 156 159 | 30 28 36 34 37 | |
Итого | 5 | 750 | 165 | |
III | 160 - 180 | 3 18 14 9 21 24 17 2 25 29 10 | 161 163 165 169 166 170 171 174 175 177 179 | 40 41 42 43 39 46 45 47 48 45 48 | |
Итого | 11 | 1870 | 484 | |
IV | 180 - 200 | 5 26 8 28 13 30 4 | 182 184 187 189 190 194 197 | 44 54 59 56 58 61 60 | |
Итого | 7 | 1323 | 392 | |
А | Б | 1 | 2 | 3 | |
V | 200 - 220 | 20 7 27 6 | 208 215 217 220 | 70 68 74 64 | |
Итого | 4 | 860 | 276 | |
Всего | 30 | 5190 | 1380 | |
|
Для установления наличия и характера связи между величиной среднесписочной численности работников и объемом выпускаемой продукции по данным рабочей таблицы 2.1 строим итоговую аналитическую таблицу 2.2.
Таблица 2.2.
Зависимость объема выпускаемой продукции от среднесписочной численности работников.
|
№ п.п. | Группы предприятий по среднесписочной численности работников | Число пред -приятий | Среднесписочная численность работников | Объем выпускаемой продукции | |
| | | Всего | Средняя численность работников | Всего | в среднем на одно предприятие | |
А | Б | 1 | 2 | 3 | 4 | 5 | |
| 120 - 140 140 - 160 160 - 180 180 - 200 200 - 220 | 3 5 11 7 4 | 387 750 1870 1323 860 | 129 150 170 189 215 | 63 165 484 392 276 | 21 33 44 56 69 | |
Итого | 30 | 5190 | 173 | 1380 | 46 | |
|
Данные таблицы 2.2 показывают, что с ростом среднесписочной численности работников, средний объем продукции, выпускаемой одним предприятием, растет. Следовательно, между исследуемыми признаками существует прямая корреляционная зависимость.
· Корреляционная таблица.
Для изучения структуры предприятий по объему выпускаемой продукции, пользуясь таблицей исходных данных, построим интервальный вариационный ряд, характеризующий распределение предприятий по объему выпускаемой продукции. Величина интервала равна:
12 млн.руб.
|
Интервальный ряд | Дискретный ряд | - количество предприятий внутри i - той группы | |
1гр.: 14 - 26 | (14+26)/2=20 | 3 | |
2гр.: 26 - 38 | (26+38)/2=32 | 5 | |
3гр.: 38 - 50 | (28+50)/2=44 | 12 | |
4гр.: 50 - 62 | (50+62)/2=56 | 6 | |
5гр.: 62 - 74 | (62+74)/2=68 | 4 | |
|
По таблице исходных данных необходимо определить, существует ли зависимость между среднесписочной численностью работников (факторный признак х) и выпускаемой продукцией (результативный признак y).
Построим корреляционную таблицу, образовав 5 групп по факторному и результативному признакам (табл.2.3).
Таблица 2.3.
Распределение предприятий по среднесписочной численности работников и объему выпускаемой прдукции.
|
Среднесписочная численность работников | Выпускаемая продукция, млн.руб. | |
| 14 - 26 | 26 - 38 | 38 - 50 | 50 - 62 | 62 - 74 | Итого | |
120 - 140 | 3 | | | | | 3 | |
140 - 160 | | 5 | | | | 5 | |
160 - 180 | | | 11 | | | 11 | |
180 - 200 | | | 1 | 6 | | 7 | |
200 - 220 | | | | | 4 | 4 | |
Итого | 3 | 5 | 12 | 6 | 4 | 30 | |
|
Как видно из данных табл.2.3, распределение числа предприятий произошло вдоль диагонали, проведенной из левого верхнего угла в правый нижний угол таблицы, т.е. увеличение признак “среднесписочная численность работников” сопровождалось увеличением признака “выпускаемая продукция”.
Характер концентрации частот по диагонали корреляционной таблицы свидетельствует о наличии прямой тесной корреляционной связи между изучаемыми признаками.
2. Теснота корреляционной связи между названными признаками может быть измерена с помощью коэффициента детерминации и эмпирического корреляционного отношения.
· Коэффициент детерминации равен отношению межгрупповой дисперсии к общей:
Межгрупповая дисперсия равна:
=
Общая дисперсия равна:
=249 + 186 = 435
Средняя из групповых дисперсий:
==
Групповая дисперсия равна:
=0.428 или 42,8%
Это означает, что выпускаемая продукция на 42,8% зависит от среднесписочной численности работников, а на 57,2% - от других факторов.
· Эмпирическое корреляционное отношение.
Чем значение корреляционного отношения ближе к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
В нашем примере , что свидетельствует (из соотношения Чэддока) о тесной связи (0,7 - 0,9) между выпуском продукции и среднесписочной численностью работников.
ЗАДАНИЕ 3
По результатам выполнения задания 1 с вероятностью 0,683 определите:
1. Ошибку выборки среднесписочной численности работников и границы, в которых будет находиться среднесписочная численность работников в генеральной совокупности.
2. Ошибку выборки доли предприятия со среднесписочной численностью работников 180 и более человек и границы, в которых будет находиться генеральная доля.
РЕШЕНИЕ
1. Для определения среднесписочной численности работников на предприятиях была произведена 20% - ная механическая выборка, в которую попало 30 предприятий. В результате обследования было установлено, что средняя арифметическая среднесписочной численности работников 173 чел. При среднем квадратическом отклонении 23 чел.
Границы, в которых будет находиться среднесписочная численность работников в генеральной совокупности
Т.к. выборка механическая, предельная ошибка выборки определяется по формулам:
где N - объем генеральной совокупности (число входящих в нее единиц). Т.к. выборка 20% - ная, то N=150 (5*30).
20% - ная выборка означает, что отбирается и проверяется каждая 5-ая единица (1:0,2).
n - объем выборки (число обследованных единиц) = 30 предприятий.
- генеральная дисперсия (дисперсия признака в генеральной совокупности).
t = 1 (из таблицы значений интегральной функции Лапласа при заданной вероятности 0,683)
чел.
С вероятностью 0,683 можно утверждать, что среднесписочная численность работников находится в пределах или
2. Доля предприятий со среднесписочной численностью работников 180 и более человек находится в пределах:
Выборочная доля составит:
=11/30=0,37,
где m - доля единиц, обладающих признаком;
n - численность выборки.
Ошибка выборки генеральной доли составит:
или 7,9%
С вероятностью 0,683 можно утверждать, что доля предприятий со среднесписочной численностью работников 180 чел. и более будет находиться в пределах p = 37%7.9% или 29,1%p44,9%.
ЗАДАНИЕ 4
Имеются следующие данные по двум предприятиям отрасли:
|
№ пр - я п/п | Выпуск продукции, тыс.руб. | Среднесписочная численность рабочих, чел. | |
| Базисный период | Отчетный период | Базисный период | Отчетный период | |
1 2 | 6400 4800 | 6000 6000 | 100 60 | 80 60 | |
|
Определите:
1. По каждому предприятию уровни и динамику производительности труда. Результаты расчетов представьте в таблице.
2. По двум предприятиям вместе:
· индексы производительности труда (переменного, постоянного состава, структурных сдвигов);
· абсолютное изменение средней производительности труда за счет отдельных факторов.
Сделайте выводы.
РЕШЕНИЕ
1. Для характеристики уровня производительности труда в статистической практике используют выработку.
Выработка W характеризует количество продукции, производимой на одного работника. Она является прямым показателем производительности труда - чем больше выработка, тем выше производительность труда.
W=П/T, где W - средняя выработка; П - количество произведенной продукции; T - численность работников.
П=WT
Результаты расчетов представим в таблице 4.1.
Таблица 4.1.
Характеристика уровней производительности труда
|
№ пр - я п/п | Производительность труда, тыс.руб./чел. | Численность работников, чел. | Выпуск продукции, тыс.руб. | |
| Базисный период | Отчетный период | Базисный период | Отчетный период | Базисный период | Отчетный период | |
| | | | | | | |
1 2 | 64 80 | 75 100 | 100 60 | 80 60 | 6400 4800 | 6000 6000 | |
Итого | - | - | 160 | 140 | 11200 | 12000 | |
|
2. Рассчитаем по двум предприятиям вместе индексы производительности труда:
· индекс переменного состава.
Для исчисления индекса производительности труда переменного состава по двум предприятиям вместе вначале определим среднюю производительность труда, тыс.руб./чел.:
в базисный период =70;
в отчетный период 85.7.
Теперь исчислим индекс средней производительности труда переменного состава:
1.224 или 122, 4%
Следовательно, средняя производительность труда по двум предприятиям вместе в отчетном периоде по сравнению с базисным увеличилась на 22,4%.
· Индекс постоянного состава.
Определим, в какой мере изменение производительности труда произошло в результате изменения только производительности труда на отдельных предприятиях. Для этого сравним среднюю производительность труда в отчетном периоде со средней производительностью труда в базисном периоде при одинаковой численности работников (отчетный период) на основе индекса постоянного состава:
=1,21 или 121%
Исчисленный индекс характеризует общее изменение производительности труда на отдельных предприятиях. Средняя производительность труда в отчетном периоде по сравнению с базисным в результате изменения только производительности труда на отдельных предприятиях выросла на 21%.
· Индекс структурных сдвигов.
Определим, в какой мере изменение средней производительности труда произошло в результате изменения только среднесписочной численности рабочих. Для этого сравним среднюю производительность труда в отчетном периоде со средней производительностью труда в базисном периоде при производительности труда на отдельных предприятиях на уровне базисного периода, т.е. исчислим индекс структурных сдвигов:
==1,012 или 101,2%
Индекс показывает, что средняя производительность труда в результате изменения численности рабочих выросла дополнительно на 1,2%.
· Абсолютное изменение средней производительности труда за счет отдельных факторов.
Абсолютное изменение средней производительности труда составило:
85.7-70=15.7тыс.руб./чел., что привело к увеличению количества выпускаемой продукции на 800 тыс. руб., т.е. (12000 - 11200)
Изменение средней производительности труда происходило под влиянием двух факторов: изменения производительности труда на отдельных предприятиях и изменения среднесписочной численности рабочих.
Абсолютное изменение средней производительности труда за счет изменения производительности труда на отдельных предприятиях составит: 85,7 - 70,9 = 14,8 тыс.руб./чел.
Абсолютное изменение средней производительности труда в результате изменения численности рабочих составило: 70.86 - 70 = 0.86 тыс.руб./чел.
Общий вывод: если бы происшедшие изменения производительности труда не сопровождались структурными перераспределениями на предприятиях, то средняя производительность труда по двум предприятиям возросла бы на 21%. Изменение структуры выпуска продукции на отдельных предприятиях в общем объеме выпуска вызвало повышение средней производительности труда на 1,2%. Одновременное воздействие двух факторов увеличило среднюю производительность труда по двум предприятиям на 22,4%.