Центральная Научная Библиотека  
Главная
 
Новости
 
Разделы
 
Работы
 
Контакты
 
E-mail
 
  Главная    

 

  Поиск:  

Меню 

· Главная
· Биржевое дело
· Военное дело и   гражданская оборона
· Геодезия
· Естествознание
· Искусство и культура
· Краеведение и   этнография
· Культурология
· Международное   публичное право
· Менеджмент и трудовые   отношения
· Оккультизм и уфология
· Религия и мифология
· Теория государства и   права
· Транспорт
· Экономика и   экономическая теория
· Военная кафедра
· Авиация и космонавтика
· Административное право
· Арбитражный процесс
· Архитектура
· Астрономия
· Банковское дело
· Безопасность   жизнедеятельности
· Биржевое дело
· Ботаника и сельское   хозяйство
· Бухгалтерский учет и   аудит
· Валютные отношения
· Ветеринария




Параметры и силы, влияющие на вагон при движении

Параметры и силы, влияющие на вагон при движении

Московский Государственный институт путей сообщения

(МИИТ)

Воронежский филиал

Контрольная работа

по дисциплине: «Динамика вагонов»

Воронеж 2010

СОДЕРЖАНИЕ

Часть 1

1. Определение собственных частот колебаний вагона

2. Расчет параметров гасителей колебаний

3. Проверка рессорного подвешивания на отсутствие «валкости»

4. Составление дифференциального уравнения вынужденных колебаний подпрыгивания вагона и нахождение аналитического выражения описывающего процесс вынужденных колебаний подпрыгивания вагона

Часть 2

1. Расчет динамических боковых и рамных сил при вписывании вагона в кривых участках пути

2. Расчет наибольших боковых и рамных сил возникающих при извилистом движении вагона в прямых участках пути и при выходе его в кривую

3. Расчет наибольших сил инерции необрессоренных масс вагона при проходе колесом стыка и движении колеса с ползунами на поверхности катания

Часть 3

1. Расчет запасов устойчивости вагона и устойчивости сдвигу рельсошпальной решетки и от схода колес вагона с рельса при действии продольных сил в поезде

Исходные данные

Тип вагона

Хоппер грузоподъемностью 50 т

Тара вагона Gтар, т

21

Грузоподъемность Gгр, т

50

База вагона L, м

5,081

Длинна вагона Lв, м

10,03

Боковая поверхность кузова вагона (площадь ветрового «паруса») F, м

25

Высота центра ветровой поверхности кузова относительно центра колеса hв, м

1,87

Условное обозначение и тип тележки

1

База тележки lт,

1,8

Вес тележки Gтел, Н

45,70

Вес необрессоренных частей, приходящихся на колесо q, Н

9,75

Наибольший прогиб рессорного комплекта с1, кН/м

10000

Полярный момент инерции тележки, относительно вертикальной оси, проходящей через центр I0, Н*м*с2

0,595*105

Тип гасителя колебаний

Fгас=-FтрsignZ

Использование грузоподъемности вагона , %

0

Высота центра тяжести кузова с грузом над уровнем рессорного подвешивания hц, м

1.1

Момент инерции вагона с грузом относительно оси, проходящей в плоскости верха рессор и направленной:

а) параллельно оси пути Ix, Н*м*с2* 104

б) перпендикулярно оси пути Iy, Н*м*с2*104


5.9

14.9

Скорость движения вагона v, км/ч

50

Длина периода неровности пути lн, см

1250

Радиус круговой кривой R, м

800

Длина переходной кривой lн, м

75

Амплитуда неровностей пути h, см

0.95

Угол, образуемый концами рельсов в стыке при перекатывании колеса через стык , рад

0,021

Длина ползуна на колесе а, мм

22

Масса пути, взаимодействующая с колесом при ударе ползуна m, Н*с/м*103

0,09

Боковая жесткость пути сп, 106 H/м

28,9

Величина сжимающего продольного усилия в поезде S, кН

200

Разность высот автосцепок у соседних вагонов hа, мм

100

ЧАСТЬ 1

1. Определение собственных частот колебаний вагона

Круговая частота собственных колебаний вагона определяем по формуле:

(1)

где g = 9, 81 м/с2 - ускорение свободного падения;

fст - статический прогиб рессор.

Статический прогиб рессор определяем по формуле:

(2)

где G - вес кузова вагона;

с1 - жесткость одного рессорного комплекта.

Вес кузова вагона определяем по формуле:

где Gтар - тара вагона;

Gгр - грузоподъемность вагона;

- доля использования грузоподъемности вагона;

Gтел - вес тележки.

G = 210000+0*50-2*45,70 = 209908,6 Н

fст = 209908,6/4*1000000 = 0,052 м

(3)

Тогда период колебаний подпрыгивания будет равен:

(4)

Угловую частоту собственных колебаний галопирования кузова вагона находим по формуле:

(5)

где l1 +l2 = L - база вагона;

h - высота центра тяжести вагона с грузом над уровнем рессорного подвешивания

Iy - момент инерции вагона с грузом относительно оси, проходящей в плоскости верха рессор и направленной перпендикулярно оси пути.

Тогда

(6)

Из формулы 7 следует, что чем меньше жесткость рессорного подвешивания с1, чем больше момент инерции кузова Iy и выше центр тяжести h, тем меньше частота собственных колебаний галопирования гал и тем больше период галопирования Tгал.

Колебания боковой качки могут быть рассмотрены с помощью той же схемы, приняв в ней вместо l1 и l2 величины b1 и b2 и вместо момента инерции кузова вагона Iy (относительно оси y) - момент инерции кузова вагона относительно оси x - Ix

Тогда период колебаний будет равен

Линейные частоты колебаний кузова определяются по формуле:

Тогда

Следовательно, чем больше величина частоты, тем больше плавность хода вагона.

2. Расчет параметров гасителей колебаний

Задан гаситель с постоянной силой трения

где Nтр - нормальная сила (нажатие) в трущейся паре гасителя;

- коэффициент трения частей пары.

3. Проверка рессорного подвешивания на отсутствие «валкости»

Для определения высоты метоцентра рассмотрим вагон, вес кузова которого G и жесткость рессоры с. Тогда, реакции рессорных комплектов при наклоне кузова на угол составят:

Момент реакции рессор относительно точки О1

Заменим действие силы R1 и R2 их равнодействующей R, а точку пересечения равнодействующей в наклонной осью вагона назовем метацентром вагона. Момент равнодействующей R относительно точки O1

где hМ - высота метацентра от пола вагона.

Поскольку угол мал, то tg0, т.е. M0=RhM, где R = R1 + R2 = Q, то приравнивая момент силы R1 и R2 моменту от их равнодействующей R, получим hMG = 2b2c, отсюда

где fст - статический прогиб рессорного подвешивания вагона;

b - половина базы тележки.

Высота метацентра выше центра тяжести вагона более чем на 2 м, следовательно вагон устойчив.

4. Составление дифференциального уравнения вынужденных колебаний подпрыгивания вагона и нахождение аналитического выражения описывающего процесс вынужденных колебаний подпрыгивания вагона

Решение дифференциального уравнения = 2/Т является аналитическим выражением процесса вынужденных колебаний подпрыгивания вагона при движении его по регулярным неровностям вида z = hcost.

Это решение имеет вид:

где - скорость движения вагона;

lн - длинна периода неровностей;

2h - высота неровностей;

- круговая частота собственных колебаний

Для колеса вагона номер i возмущение функции имеет вид:

где li - расстояние от первого до i-го колеса.

Амплитуда вынужденных колебаний подпрыгивания кузова вагона будет иметь вид:

Для заданного вагона

Аналитическое выражение описывающее процесс вынужденных колебаний будет иметь вид:

Для построения графика определяем зависимость z от t

При t=1 сек

Для других значений t

ЧАСТЬ II

1. Расчет динамических боковых и рамных сил при вписывании вагона в кривых участках пути

Наибольшие боковые силы возникают тогда, когда при движении вагона наибольшее допустимое непогашенное ускорение на вагон достигает 0,7 м/с2. Это возможно при минимально допустимом для этой кривой возвышении наружного рельса. Его можно определить используя формулу:

Величина действующей на одну тележку поперечной горизонтальной силы:

где m - масса вагона;

анет - непогашенное поперечное ускорение;

Hв - сила ветра, действующая на вагон и направленная поперек пути

Принимая aнет = 0,8 м/с2, получим

При действии на вагон продольных сил S, которые могут возникнуть, например при рекуперативном напряжении на шкворень тележки действуют дополнительная сила Hторм которая приближенно равна:

Наибольший угол можно определить по формуле:

Общее усилие на шкворень в этом случае

где S - продольное усилие в поезде;

2k - расстояние между клиновыми отверстиями автосцепок.

Поскольку, в своем движении по кривой тележка непрерывно вращается вокруг полюса поворота, то образующийся от силы H0брт момент относительно точки О уравновешивается направляющим усилием Y (давление гребня набегающего колеса первой оси тележки на боковую поверхность) поперечными силами трения колес по рельсам.

где P - вертикальная нагрузка, передаваемая колесом рельсу;

- коэффициент трения колесом по рельсу (принимаем = 0,25).

Уравнение проекций этих сил имеет вид:

Положение центра поворота в общем случае находим методом попыток. Для двухосной тележки по графику [2] определяем расстояние от шкворня до точки О в зависимости от отношения . Из рисунка 4 видно, что

где s1 = 1,6 м - расстояние между осями рельсов;

lТ - база тележки (180 см).

Определим направляющее усилие Y

Боковая сила определяется из уравнения

а рамная сила

где

2. Расчет наибольших боковых и рамных сил возникающих при извилистом движении вагона в прямых участках пути и при выходе его в кривую

Наибольшую величину боковой силы Y при извилистом движении в прямом участке определяют по формуле:

где =40 мм - зазор между рабочими гребнями колес и рельсами;

J0 = 0,595*104 - полярный момент инерции тележки относительно вертикальной оси проходящей через центр;

n = 1/20 - наклон образующей конуса и оси;

Сn = 19,1*106 кгс/м - боковая жесткость пути;

= 0,25 - коэффициент трения поверхности обода по рельсу.

Рамная сила:

Определим боковую силу при входе вагона в кривые участки пути

где

Параметр переходной кривой Cпер следует рассчитывать по заданному радиусу R круговой кривой и l0 - длине переходной кривой и до ближайшего числа кратного 5000 м2

Рамная сила

3. Расчет наибольших сил инерции необрессореных масс вагона при проходе колесом стыка и движении колеса с ползунами на поверхности катания

Наибольшая величина силы инерции необрессореных масс вагона рассчитывается по формуле:

где vk - cкорость удара колеса о рельс;

Cк = 5*105 кгс/см - контактная жесткость;

mn = 100 кгс/g - масса пути.

Необходимо предварительно определить скорость удара колес по рельсу. Она равна при движении колес с ползуном

При прохождении стыка, в котором рельсы при прогибе образуют угол

Часть III

Расчеты запасов устойчивости вагона и устойчивости сдвигу рельсошпальной решетки и от схода колес вагона с рельса при действии продольных сил в поезде

Для расчета устойчивости движения колес по рельсу следует определить величины нагрузок, передаваемых на шейки колесной пары P1 и Р2.

Кроме статической нагрузки на шейке колесной пары передаются усилия вызванные колебаниями надрессорного строения. Наиболее выгодным положением с точки зрения устойчивости колеса на рельс будет случай, когда в целом колесная пара разгружается колебаниями галопирования и подпрыгивания, а в колебаниях боковой качки обезгружено колесо, набегающее на наружный рельс кривой.

Если общий динамический коэффициент колебаний надрессорного строения равен KДО = 0,277, в боковой качки Кбк = 0,09

где q = 975 кгс - необрессоренный вес, приходящийся на одно колесо;

PСТ - нагрузка от колеса на рельс.

Кроме того, за счет действия непогашенного ускорения и ветровой нагрузки произойдет перегрузка шейки колеса идущего по наружной грани нити и разгрузка шейки колеса, идущего по внутренней нитке. Если центр тяжести кузова находится на hц от головки рельса, а центр ветровой поверхности на высоте hв от головки рельса, то момент опрокидывающих сил будет равен:

Момент удерживающих сил

где b - расстояние между серединами шеек колесной пары (203,6 см)

P1 - величина нагрузки колеса, идущего по наружному рельсу, или величина разгрузки колеса, идущего по внутреннему рельсу

При разности высот автосцепок у соседних вагонов ha=75 мм и при действии на вагон продольных сил S происходит разгрузка тележки, которая равна

Если разница в высоте автосцепок соседних вагонов равна hа, то

где Lв - длинна вагона

k - 6,365 м - половина расстояния между клиновыми отверстиями автосцепок

Так как разгрузки Р1 и Р2 распределяются на четыре колеса тележки, то

Зная Р1, Р2 и Yр можно определить коэффициент запаса устойчивости колесной пары по вползанию гребня колеса на рельс

С учетом размеров колесной пары b1 = 0,228 м; b2 = 1,808 м; R = 0,475 м; r = 0,075 м

Определение устойчивости пути поперечному сдвигу.

Для определения устойчивости рельсовой решетки поперечному сдвигу при заданных расчетных данных следует применять условие , где

Условие 52279 т 210000т соблюдается. Рельсовая решетка устойчива поперечному сдвигу.






Информация 







© Центральная Научная Библиотека