Центральная Научная Библиотека  
Главная
 
Новости
 
Разделы
 
Работы
 
Контакты
 
E-mail
 
  Главная    

 

  Поиск:  

Меню 

· Главная
· Биржевое дело
· Военное дело и   гражданская оборона
· Геодезия
· Естествознание
· Искусство и культура
· Краеведение и   этнография
· Культурология
· Международное   публичное право
· Менеджмент и трудовые   отношения
· Оккультизм и уфология
· Религия и мифология
· Теория государства и   права
· Транспорт
· Экономика и   экономическая теория
· Военная кафедра
· Авиация и космонавтика
· Административное право
· Арбитражный процесс
· Архитектура
· Астрономия
· Банковское дело
· Безопасность   жизнедеятельности
· Биржевое дело
· Ботаника и сельское   хозяйство
· Бухгалтерский учет и   аудит
· Валютные отношения
· Ветеринария




Восстановление клапанов двигателя ЗИЛ-130

Восстановление клапанов двигателя ЗИЛ-130

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГТУ)

ВОЛЖСКИЙ ФИЛИАЛ

КУРСОВАЯ РАБОТА

ПО ДИСЦИПЛИНЕ? «ТЕХНОЛОГИЯ И ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ И СБОРОЧНЫХ ЕДЕНИЦ АВТОМОБИЛЯ»

НА ТЕМУ? «ВОССТАНОВЛЕНИЕ КЛАПАНОВ ДВИГАТЕЛЯ ЗИЛ-130»

ВЫПОЛНИЛ: СТУДЕНТ

ГРУППЫ ЭТ-44с

-----------------.

ПРОВЕРИЛ:

-----------------

------------- 2007 г

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ ГАЗОРАСПРЕДЕЛИТЕЛЬНОГО МЕХАНИЗМА

1.1 ХРОМИРОВАНИЕ

1.2 ОСТАЛИВАНИЕ

1.3 ЖЕЛЕЗНЕНИЕ

1.4 ШЛИФОВАНИЕ

2. ОРГАНИЗАЦИЯ РАБОЧИХ МЕСТ И ТЕХНИКА БЕЗОПАСНОСТИ

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

ДЕФЕКТЫ КЛАПАНА

ВВЕДЕНИЕ

Ограниченные государственные запасы материалов и энергии не позволяют в достаточной мере развивать машиностроение, и с целью сохранения парка машин в работоспособном состоянии требуется развивать и совершенствовать ремонтное производство.

Ремонт машин существует со времени создания их парка как объективная необходимость приведения машин в исправное состояние в перерывах между использованием по назначению. Ремонт состоит в устранении неисправностей и восстановлении ресурса машин, а главная задача ремонтного производства заключается в экономически эффективном восстановлении надежности машин в результате наиболее полного использования остаточной долговечности их деталей.

Ремонтное производство включает в себя заводы по ремонту автомобилей, тракторов, бронетехники, самолетов, судов, тепловозов и экскаваторов, бытовой техники и агрегатов в системе министерств сельского хозяйства, продовольствия, транспорта, обороны и др. По своей мощности, функциям и задачам это производство является крупной отраслью национального хозяйства, которая, по сути, осуществляет вторичное производство машин. В настоящее время в эксплуатации находится больше отремонтированных машин, чем новых.

Научная база ремонта машин создавалась на трудах профессоров В.Э. Вейриха, И.В. Грибова, В.В. Ефремова В.И. Казарцева, К.Т. Кошкина, В.А. Шадричева и др. Предмет науки о ремонте машин составляют закономерности подготовки и организации производства к ремонту машин, обеспечивающего требуемое качество и заданное количество отремонтированной техники с наименьшими затратами труда, энергии и материалов. Ремонтное производство имеет существенные отличия от машиностроительного производства, что определяет необходимость изучения его специфичных процессов, в том числе восстановления свойств, утраченных машинами в чеченце их длительной эксплуатации.

Основной источник экономической эффективности ремонта заключается в восстановлении изношенных деталей. При восстановлении используют доремонтные материалы и формы деталей. Заготовки ремонта, полученные в результате разборки и очистки машины, значительно дешевле заготовок машиностроения, изготовленных в литейном или кузнечно-штамповочном производстве. При восстановлении детали обрабатывают меньшее число поверхностей, что объясняет и меньшую трудоемкость обработки. "Обоснованный процесс восстановления обеспечивает получение детали со свойствами, близкими к свойствам новой детали или превосходящими их. Восстановление изношенных деталей в системе вторичного производства машин является природоохранным и ресурсосберегающим производством. На изготовление, например, одного коленчатого вала автомобильного двигателя с рабочим объемом 4,8 л расходуют 57 кг металла, 183 МДж энергии, масса.

Однако послеремонтная наработка техники с восстановленными деталями уступает ее нормативной наработке: он t в 1,5...2,5 раза меньше наработки новых изделий. I (а долю устранения отказов приходится до 60 % общих затрат на поддержание машин в работоспособном состоянии, а наработка па. сложный отказ в среднем на 30 % паже нормативных значений. Эти показатели объясняются тем, что восстановительное производство в количественном и качественном отношениях, оснащены только на 15...25 % по сравнению с предприятиями по изготовлению машин. В то же время опыт ремонта самолетов, судов, тепловозов, автомобилей и двигателей силами заводов-изготовителей гелей, а также опыт ремонта машин западными фирмами свидетельствуют о возможности достижения послеремонтной наработки объектов не меньше, чем у новых изделий, при затратах, не превышающих 60 % затрат на их производство. Практика показывает, что научно обоснованные технология и организация восстановления деталей позволяют достичь нормативной наработки техники, а в отдельных случаях и превзойти наработку новых изделий.

1. ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ ГАЗОРАСПРЕДЕЛИТЕЛЬНОГО МЕХАНИЗМА

При наличии трещин клапан бракуется. Деформация стержня клапана устраняется статической правкой. Износ стержня устраняется хромированием или железнением.

Перед нанесением гальванопокрытия стержень клапана Шлифуется на бесцентрово-шлифовальном станке ЗА 184 на глубину 0.1 м. Используются шлифовальные круги ПП500 х 200 х 305 16А 32-П СТ2 6В и ПП300 х 200 ,. 127 16А 16-П СТ2 6В. Режим: скорость резания 40 м/с; подача 0,12 мм/об. При этом обеспечивается шероховатость поверхности, имеющая

Ra= 1,25 мкм.

При хромировании наносится покрытие, обеспечивающее припуск на последующее шлифование не менее 0,05 мм на сторону.

Шлифование хромированного стержня осуществляется на бесцентрово-шлифовальных станках Шлифовальными кругами марок 13А 6-П СМ1 6К5, и 16А 16-П СТ2 6В. Лучшие результат достигаются при использовании шлифовальных кругов из синтетических алмазов АСП25К6-50 при скорости крута 30 м/с. Такая обработка обеспечивает Ra = 0,32 мкм. Для обеспечения качества необходимо проводить двукратное шлифование поверхности.

Торец клапана шлифуется до устранения следов износа на круглошлифовальном станке ЗА161 шлифовальным крутом ГПП600 х 63 х 305 16А 32-П С2 6К5 при скорости 11 м/с. Шероховатость поверхности имеет Ra - 0,32 мкм. На этой же операции осуществляется шлифование фаски стержня клапана.Рабочая фаска клапана шлифуется на специальных станках МШ-197А или МШ-29 шлифовальным кругом ПП400 х 500 у. 203 16А 25-П СТ15 К5 при скорости резания 40 м/с.

Шероховатость поверхности фаски характеризуется Ra = 0,63 мкм. Завершающе операцией механической обработки является полирование стержня клапана.

Операция проводится на бесцентровом шлифовально-полировальном станке типа 3864 шлифовальной шкуркой на тканевой основе зернистостью 4...6. Скорость полирования 16 м/с, частота вращения клапана 36 об/мин. Для восстановления автомобильных деталей осталиванием, хромированием и цинкованием ГОСНИТИ разработан комплект гальванического оборудования ОРГ-10578. В него входят ванны осталивания, травлений, обезжиривания и хромирования (все по одной), три ванны горячей промывки, ванна нейтрализации, две ванны холодной промывки, тележка для фильтрации электролита, три источник постоянного тока, три пульта управления и электротельфер.

Процессы хромирования, осталивания и электронатирання применяются для компенсации износа рабочих поверхностей деталей.

1.1 ХРОМИРОВАНИЕ

Хромированием целесообразно восстанавливать детали с износом не более 0,3 мм. При большей толщине покрытия из хрома имеют пониженные механические свойства. Кроме того, повышается стоимость восстановления детали. Поэтому наращивания толстого покрытия надо избегать.

Электролиты для хромирования. В качестве электролита при хромировании применяется водный раствор хромового ангидрида и серной кислоты. Наибольшее применение находят стандартные электролиты, содержащие 200250 г/л хромового ангидрида и 2,02,5 г/л серной кислоты. Соотношение 100 :1 важно выдерживать. Для нормальной работы электролита площадь анодов должна быть в полтора-два раза.

В авторемонтном производстве находят также применение так называемые саморегулирующиеся электролиты, которые за счет введения в них специальных добавок не требуют корректирования концентрации. В них кроме хромового ангидрида (225300 г/л) входят сернокислый стронций (5,56,0 г/л) и кремнефтористый калий

Технология хромирования. Она включает в себя три группы операций подготовку детали, нанесение слоя хрома, обработку покрытия.

Перед поступлением в гальванический цех (участок) деталь должна бьш тщательно вымыта и очищена от всех загрязнений. Если восстанавливаемая поверхность имеет конусообразность, овальность, риски или задиры, то деталь должна пройти механическую обработку до устранения этих дефектов.

Участки детали, не подлежащие хромированию, должны быть надежно закрыты. Для изоляции этих мест применяют защитные экраны из второпласта, винипласта полихлорвинилового пластиката, а также трубки из фарфора и других кислотостойких материалов.

При монтаже деталей на под вески необходимо обеспечить надежный и? электрический контакт с токоподводящей штангой благоприятные условия для равномерного распределения покрытия по поверхности детали и для удаления пузырьков водорода, выделяющихся при электролизе.

Непосредственно перед хромированием детали несколько раз обезжиривают и проводят анодную обработку, цель которой удалить с поверхности детали тончайшие окисные пленки. Анодную обработку производят в той же ванне, что и хромирование. Деталь сначала выдерживают без тока, затем в течение 3045 с пpи плотности тока 25 35 А/дм2, после чего переключают на катод. С этого момента на поверхности детали начинает осаждаться слой хрома.

Продолжительность процесса зависит от толщины покрытия, состава электролита и режима работы ванны и составляет от 2 до 18 ч.

1.2 ОСТАЛИВАНИЕ

По сравнению с хромированием процесс осталивания имеет ряд преимуществ: большую скорость нанесения покрытия, высокий выход, металла по току, возможность получения более толстых покрытий, использование более простых и дешевых электролитов. Осталиванием восстанавливают изношенные стержни клапанов, цилиндрические поверхности толкателей, валики масляных и водяных насосов, другие детали.

Технологический процесс восстановления деталей осталиванием состоит из подготовки восстанавливаемой поверхности к осталиванию, анодного травления, собственно осталивания, промывки и механической обработки.

Очищенную от загрязнений деталь сначала шлифуют до устранения следов износа, затем отправляют в гальванический цех для дальнейшей обработки. Здесь детали обезжиривают, для чего их монтируют на подвески и опускают в ванну с раствором следующего состава: 20 г/л едкого натра; 25 г/л соды углекислой или кальцинированной; 25 г/л тринатрийфосфата; 5 г/л растворимого (жидкого) стекла. Обезжиривание проводят в течение 56 мин при плотности тока 23 кА/м2. Температура раствора должна быть 7080 °С.

Обезжиренные детали промывают в горячей воде, поверхности, не подлежащие покрытию, изолируют полихлорвиниловой лентой или другим кислотостойким материалом. После такой обработки деталь еще раз обезжиривают венской известью с добавкой 5°/о кальцинированной соды и промывают проточной холодной водой.

Электролитическое анодное травление выполняют в ванне такого состава: 360.400 г/л серной кислоты; 10 20 г/л сернокислого железа. Плотность тока 2,5 3,0 кА/м2, температура 1520°С, продолжительность 1-2 мин. Детали, прошедшие анодное травление, промывают в горячей воде. Затем подвески с деталями загружают в ванну для осталивания.

Осталивание рекомендуется проводить в ванне следующего состава: 250300 г/л хлористого железа; 1,Of 1,5 г/л соляной кислоты; 10 г/л хлористого марганца;

Возможно применение и других составов.

Процесс осталивания рекомендуется начинать с малой плотности тока 0,5 кА/м2, < через каждые 5 мин добавлять 0,5 кА/м2, пока его плотность не достигнет ЗА кА/м2 Температуру электролита надо выдерживать в пределах 6090 °С.

После осталивания и промывки детали вместе с подиссками погружают в ванну обезжиривания и нейтрализации кислоты. Состав электролита: 2030 г/л едкого натра 1020 г/л жидкого стекла; 2530 г/л кальцинированной соды. Время обработки 34 мин, температура 60-70 °С.

Завершается восстановление детали механической обработкой.

1.3 ЖЕЛЕЗНЕНИЕ

Железнением называется процесс получения прочных износостойких железных покрытий из электролитов. Этот процесс используется в ремонтном производстве для компенсации износа поверхностей деталей. Однако он может использоваться для исправления брака механической обработки, упрочнения рабочих поверхностей деталей из малоуглеродистой стали, не прошедших термическую обработку покрытия пластинок твердого сплава для облегчения прижатия их к резцам.

Химический состав электролитического железа зависит от состава исходных материалов, применяемых при электролизе. В обычных условиях электролиза с применением растворимых анодов железо осаждается с большим количеством примесей и по химическому составу напоминает малоуглеродистую сталь. Физико-химические свойства железных покрытий характеризуются следующими показателями: мелкокристаллическая структура, плотность г/см3, температура плавления 1535 °С, коэффициент линейного расширения 11,9 ] 10~° град-1, предел прочности неотожженного железа 735...776 МПа, относительное удлинение 10...50%, микрон твердость 1600...7800 МПа в зависимости от условий электролиза. Основные физико-механические и связанные с ним эксплуатационные свойства железных покрытий (структура, твердость, плотность, износостойкость, внешний вид) изменяются в широких пределах в зависимости от условий электролиза. Износоустойчивость деталей, восстановленных твердым (4000...600& МПа) электролитическим железом, не уступает износостойкости новых деталей. Таким образом, твердое электролитическое железо по химическому составу напоминает малоуглеродистую сталь, а по некоторым свойствам (твердость, прочность, износостойкость, коррозионная стойкость) среднеуглеродистую сталь. Процесс обладает следующими технико-экономическими показателями: исходные материалы и аноды недефицитны и дешевы, высокий выход металла по току (85... 95 %); высокая производительность скорость осаждения железа 0,2... 0,5 мм/ч; толщина твердого покрытия может достигать 0,8... 1,2 мм; возможность широких пределах регулировать свойства покрытий (микротвердость 1600...7800 МПа) в зависимости от их назначения обусловливает универсальность процесса; достаточно высокая износостойкость покрытий, приближающаяся к износостойкости закаленной стали; покрытия хорошо хромируются, что позволяет при необходимости повышать износостойкость деталей нанесение более дешевого, чем хромового, комбинированного двухслойного покрытия «железо + хром>>; себестоимость восстановления деталей железнением составляет примерно 30...50% стоимости новых деталей при равной износостойкости.

В ремонтном производстве наиболее часто применяют хлористые электролиты. Сернокислые электролиты по сравнению с хлористыми обладают меньшей химической агрессивностью и окисляемостью. Однако они уступают хлористым электролитам по производительности, качеству получаемых покрытий и другим показателям.

По температурному режиму электролиты разделяются на горячие и холодные. Первые характеризуются высокой температурой (60...90°С), позволяющей проводить железнение при большей плотности тока и высокой производительности процесса.

Вторые (электролиз ведётся без нагревания) в большинстве допускают применение малых плотностей тока, и поэтому малопроизводительны.

Ниже приведены наиболее распространённые электролиты.

Параметры режимов железнения

Электролит 1 23

Температура электролита 70…80 70…80 70…80

Плотность тока. А/дм" 20...4020...5020...60

Выход по току, %85...9285...9585...95

Кислотность, рН0,8...1,20,8...1,20,8... 15

Электролит 4 56

Температура электролита, °С95...9820...5030...50

Плотность тока, А/дм210...1510...3020...25

Выход по току, % 90 85...9285...92

Кислотность, рН -0,5... 1,30,6... 1,2

Состав электролитов

Процесс покрытия электролитическим железом обычно осуществляется с использованием растворимых анодов из малоуглеродистой стали 08 или 10. При растворении анодов образуется шлам, поэтому во избежание загрязнения электролита аноды помещают в чехлы из стеклоткани. В случае наращивания железного покрытия с применением нерастворимых (угольных) анодов возникает необходимость систематического корректирования состава электролита по мере сто истощения.

Электролит 1 позволяет получать плотные и гладкие покрытия плотностью 6500 МПа и толщиной до 1,0...1,2 мм. Электролит2 обладает оптимальной концентрацией, не изменяемой при длительной работе ванны, и по своим показателям близок к электролиту 1 (применяется чаще, чем электролит 1).

Высококонцентрированный электролит 3 позволяет получать высококачественные покрытия толщиной до 3 мм. Этот электролит обычно применяют при нанесении покрытий на внутренние поверхности при вневанном железнении.

Электролиты 1 и 3 не стабильны по составу. Концентрация железа в электролите 1 постепенно увеличивается, а в электролите 3 уменьшается, стремясь к оптимальному значению, что вызывает определенные затруднения при эксплуатации ванны.

Электролит 4 в ремонтной практике не применяют. Наличие в эктролите 5 аскорбиновой кислоты предотвращает его окисление и образование гидроокиси железа, в результате чего возможно получение высококачественных покрытий при низкой температуре и достаточно высокой плотности тока.

Холодный сульфатно-хлористый электролит 6 обладает достоинствами хлористых и сернокислых электролитов: менее агрессивен и более устойчив к окислению, чем хлористые, и позволяет получать покрытия хорошего качества с высокой производительностью. Этот электролит находит применение в ремонтном производстве.

Схема типового технологического процесса электролитического железнения представлена в таблице.

Операция

Последовательность операций в вариантах

Очистка деталей от грязи и масла

Обработка механическая

Промывка органическим растворителем (бензином, и др.)

Сушка

Очистка покрываемых поверхностей

Изоляция поверхностей, не подлежащих покрытию, и монтаж деталей на подвесные приспособления

Обезжиривание деталей

Промывка горячей водой (70...80°С)

Холодной водой

Травление анодное в электролите железнения

Промывка холодной водой

Обработка анодная в 30%-м растворе серной кислоты

Промывка, прогрев теплой водой (50...60°С)

Железнение

Промывка горячей водой (70...80°С)

Нейтрализация

Промывка горячей водой (70...80°С)

Демонтаж деталей с подвесок и снятие изоляции

Контроль качества покрытий

Обработка механическая

Консервация деталей

I II

1 1

(2) (2)

3 3

4 4

(5) (5)

6 6

7 7

8 8

9 9

- 10

10 13

11 12

12 14

13 15

14 16

15 17

16 18

17 19

18 20

18 21

(20) (22)

Слив масел, обеспечение доступа очистного раствора во внутренние полости агрегатов

Очистка наружных поверхностей. Промывка или выпаривание внутренних полостей агрегатов

Очистка подразобранных агрегатов

Очистка сборочных единиц

Общая очистка деталей

Очистка деталей от прочных загрязнений: асфальтосмолистых, нагара, накипи

Очистка каналов и полостей в деталях

Очистка крепежных деталей: болтов, винтов, шпилек, гаек, шайб и др.

Последовательность операций очистки поверхностей деталей от эксплуатационных загрязнений.

1.4 ШЛИФОВАНИЕ

Шлифование является основным способом обработки износостойких покрытий, отличающихся высокой твердостью. Шлифование обеспечивает должное качество поверхностного слоя. Покрытия на основе карбидов вольфрама и керамики могут быть эффективно обработаны только шлифованием. При абразивной обработке применяют материалы, состоящие из зерен, обладающих высокими твердостью и режущей способностью. Абразивные материалы бывают природные (горные породы и минералы) и искусственные. Природных материалов мало, они недостаточно однородны и тверды. Из природных материалов используют корунд, наждак (смесь корунда с оксидами железа, кремния, титана и др.), кремень, кварцевый песок, пемзу. К искусственным абразивным материалам, применяемым при шлифовании, относятся карбид кремния - карборунд SiC, карбид бора, электрокорунд, крокус (содержащий до 75 % оксида железа), оксид хрома, оксид алюминия. Для полирования служат: крокус, трепел, доломит, технический мел, высокая известь (до 95 % оксида кальция), каолин, тальк.

Зерна шлифующих материалов имеют острые грани и при шлифовании, разрушаясь, образуют осколки с острыми гранями, тем самым самозатачиваются. Зерна полирующих материалов округлой формы, что способствует выравниванию обрабатываемой поверхности. Шлифовальный круг состоит из шлифзерен, связанных каким-либо веществом. Эти круги изготовляют прессованием или литьем абразивного материала. В качестве абразивного материала используют карборунд, корунд, наждак с размером зерен 250... 1200 мкм; как связку - различные глины, полевой шпат, жидкое стекло, смолы, резины и др.

Шлифовальные круги различаются по твердости. Твердостью шлифовального круга принято считать сопротивление его связки выкрашиванию зерен при работе. При шлифовании твердых материалов следует применять мягкие круги, в которых выпадение затупившихся зерен и оголение новых происходит быстрее. При шлифовании мягких металлов зерна тупятся медленнее и круг может быть твердым.

Шлифование и полирование ведут с помощью кругов или непрерывной гибкой абразивной ленты.

Для обработки чугуна, цветных металлов и сплавов, титановых сплавов обычно применяют абразивные зерна из черного (53С...55С) и зеленого карбида кремния (63С...64С). Круги из карбида кремния (64С) пригодны для обработки покрытий средней и высокой износостойкости, однако в большинстве случаев эта обработка нерентабельна для покрытий твердостью 40...50 HRC.

Шлифование сопровождается выделением большого количества тепла и деформацией поверхностного слоя на глубину до 50 мкм, что способствует возникновению в этом слое значительных растягивающих напряжений. Неправильно выбранные режимы резания, затупленные зерна и «засаленный» круг приводят к структурным изменениям поверхностного слоя, покрытия, образованию прижогов и шлифовальных трещин. В поверхностном слое недопустимо оставлять растягивающие остаточные напряжения, отпущенные участки и шлифовальные трещины. Прижоги при шлифовании снижают предел выносливости на 30 %, а шлифовальные трещины - до 3 раз. Поверхностное обезуглероживание и снижение твердости только на 5 HRC уменьшает долговечность, например, зубчатых колес в 2...3 раза. Поэтому при шлифовании покрытий значения режимов следует выбирать значительно меньшие, чем при обработке монолитных материалов.

Режим шлифования определяется материалом обрабатываемой детали, скоростью вращения круга и его давлением на поверхность детали. Качество шлифования и полирования кругами в значительной степени зависит от окружной скорости круга. При отделке твердого металла необходима более высокая окружная скорость, чем при отделке мягкого. При шлифовании следует поддерживать определенную частоту вращения круга; увеличение ее равносильно применению более твердого круга. Частота вращения шлифовальных кругов, применяемых при обработке различных материалов, зависит от диаметра круга.

2. ОРГАНИЗАЦИЯ РАБОЧИХ МЕСТ И ТЕХНИКА БЕЗОПАСНОСТИ

Гальванические участки относятся к категории вредных производств. Высота Помещений должна быть не менее 5 м. Основное оборудование участка гальванических покрытий состоит из ванн для нанесения покрытий и вспомогательных ванн для обезжиривания, травления и промывки деталей. Ванны необходимо устанавливать в строгом соответствии с технологическим процессом. Поскольку в ремонтом производстве применяют несколько покрытий, то в целях экономии площади рекомендуется основные ванны устанавливать у стен участка, а вспомогательные посредине помещения. Если в качестве источников питания применяют выпрямители, то их следует устанавливать вблизи ванн - потребителей тока, для загрузки и выгрузки деталей, а также для их транспортировки от одной ванны к другой обычно применяют электротельферы.

Наибольший вред для здоровья работающих на гальванических участках приносят электролиты. Большинство кислотных и щелочных электролитов очень токсично и отрицательно действует на дыхательные пути и кожные покровы работающих. Гальванические процессы протекают, как правило, с выделением кислорода и водорода. Выделяющиеся газы содержат мельчайшие частицы электролита и таким образом насыщают воздух в помещения вредными парами. Для удаления из помещений участка паров, пыли и создания нормальных условий труда участок оборудуется мощной приточно-вытяжной вентиляцией. Вытяжка обеспечивается общей и местной (бортовые отсосы) вентиляционными системами. Рекомендуются следующие ориентировочные нормы объема воздуха (м3/ч) с 1 м2 зеркала электролита от ванн: Хромирования - 5000; горячего железнения и анодного травления - 3600.

Общая приточно-вытяжная вентиляция на участке должна быть с 8... 10-кратным обменом воздуха. В случаях осаждения покрытий в холодных кислых электролитах при активации и пассивировании без подогрева раствора местной вентиляции не требуется.

Полы гальванического участка обычно покрывают метлахской плиткой по асфальту или кислотоупорному цементу с уклоном 1:150 в сторону канализационного трапа. Стены высотой 1.5 - 2 м облицовывают керамической плиткой или окрашивают масляной краской. В помещении должно быть хорошее естественное или искусственное освещение. Температура воздуха в зимнее время должна быть 17... 19'С, влажность не более 70%.

Для охраны окружающей среды сточные воды после промывки необходимо, прежде чем спускать в канализацию, пропустить через очистные сооружения.

При работе на гальванических участках необходимо применить резиновую обувь, перчатки и прорезиненные фартуки. В помещении должны устанавливаться источника воды для очищения кожных покровов, на которые может случайно попасть электролит. Пораженные кислотой или кислым электролитом места после обмыва струей воды следует промыть 2...3%-м раствором питьевой соды, а пораженные щелочью 1%-м раствором уксусной кислоты. Затем снова промыть водой. Для оказания первой медицинской помощи на гальваническом участке должна быть аптечка, содержащая бинты, вату, растворы йода и борной кислоты, вазелин, 2...3%й раствор питьевой соды, 1%-й раствор уксусной кислоты, мазь против ожогов.

ЗАКЛЮЧЕНИЕ

Чтобы завоевать позиции на рынке товаров, восстановительное производство должно достичь и поддерживать нормативный уровень качества выпускаемых деталей, а для большей эффективности своей работы непрерывно уменьшать удельный расход производственных ресурсов. Это обеспечивается путем повышения технического уровня производства за счет совершенствования средств восстановления деталей при их полной загрузке, внедрения новых ТП и передовой организации труда.

Информационной базой для улучшения производства служат сведения о качестве своей отремонтированной (восстановленной) продукции, в том числе о ее послеремонтной наработке.

Качество ремонта (восстановления) выявляется с помощью четырех групп сведений:

результатов контроля ремонтируемых объектов во время их испытания и анализа выявленных дефектов;

группирования дефектов, обнаруженных пользователем техники в гарантийный период;

данных о послеремонтной наработке и отказах r подконтрольной эксплуатации;

Технический уровень восстановительного производства - это характеристика его технического совершенства. Этот показатель оценивают путем сопоставления достигнутых значений установленных показателей с их базовыми значениями. Высокого технического уровня добивается то производство, которое располагает разнообразными современными технологиями и оборудованием для их реализации.

Показатели технического уровня восстановительного производства: себестоимость продукции; годовой выпуск продукции на 1 р. основных производственных фондов, на одного работающего, рентабельность.

До 80...90 % трудоемкости ремонта приходится на участки разборки, очистки, определения технического состояния деталей, восстановления деталей, а также сборки и обкатки агрегатов, которые определяют специфику и технический уровень ремонтного производства.

Повышение технического уровня разборочно-очистных процессов представляет одну из ключевых проблем ремонта.

- Необходим переход от стационарно-постовой к поточной организации разборки, что повысит качество и производительность труда и позволит использовать механизированные средства. В результате будет исключена ручная (посредством ударов) разборка прессовых соединений, повреждающая детали. Для сохранения остаточного ресурса деталей и сборочных единиц требуется внедрить маркирование и прослеживаемость деталей, элементы необезличенного ремонта и применения механизмов для узловой разборки со статическим приложением нагрузки к деталям разъединяемых сопряжений. . Чистота поверхностей деталей обеспечивается в результате надлежащего отделения эксплуатационных и технологических загрязнений с учетом разнообразия их свойств. Наименьший расход материалов и энергии обеспечивает применение системы оборудования погружного типа для очистки внутренних и наружных поверхностей деталей от маслогрязевых и асфальтосмолистых загрязнений с непрерывной фильтрацией очистного раствора и машин ударно-диспергирующего типа для очистки поверхностей деталей от нагара и накипи. Очистные операции па ряде заводов являются самыми непривлекательными и тяжелыми, что объясняется тепловыделением от очистных машин, большой трудоемкостью загрузки, укладки и снятия детали и большой влажностью воздуха в помещении. На этих операциях требуется улучшение условий труда.

В производство следует внедрить эффективные средства для очистки и контроля герметичности каналов масляной системы.

Необходимы разработка и внедрение многошпиндельных гайковертов для разборки групп резьбовых соединений. Гайковерты должны проектироваться из унифицированных блоков. Разборка прессовых соединений должна быть полностью оснащена прессово-разборочными механизмами. Прессово-разборочные механизмы стационарного типа наиболее эффективны при поточной организации труда на постах узловой разборки. Технический уровень разборочного оборудования определяется давлением энергоносителей и частотой потребляемого тока. Нужны исследования по определению оптимального сочетания разборочных и очистных воздействий на предмет ремонта.

Запас остаточной долговечности деталей, необходимый для их повторного применения, определяют на стадии выявления их технического состояния по причине отсутствия или несовершенства средств для измерения этого параметра на восстановление направляются и те детали, которые не имеют достаточного запаса долговечности, что приводит к увеличению количества изломов деталей в эксплуатации. Технический уровень контрольно-сортировочного оборудования недостаточен. Это относится главным образом к оборудованию для определения течей в стенках и стыках и усталостных трещин в поверхностном слое металла.

Применяемое оборудование для определения трещин в шейках валов и теле деталей типа шатуна не обеспечивает объективного контроля. Наиболее актуально создание средств для определения опасных усталостных трещин на шейках чугунных коленчатых валов. При определении трещин с помощью промышленных магнитно-люминесцентных или токовихревых средств невозможно обнаружить опасные трещины в основном металле детали среди наплавочных трещин в нанесенном покрытии. Оборудование для обнаружения течей сквозь стенки корпусных деталей устроено таким образом, что при создании замкнутого объема, в который вводят пробное вещество, стыковые поверхности детали соприкасаются с герметизируемыми плитами. Трещины, выходящие на стыковые поверхности, закрываются и не могут быть обнаружены.

В производстве по восстановлению деталей должны быть сконцентрированы прогрессивные процессы создания припусков .на восстанавливаемых поверхностях.

Большая доля ремонтных работ связана с обработкой отверстий. В большинстве случаев поверхности отверстий должны быть обработаны с точностью до шестого квалитета и шероховатостью до Ra 0,32 мкм. Кроме того, в корпусных деталях поверхности отверстий выполняют функции элементов, ориентирующих между собой сопрягаемые детали. Взаимное расположение поверхностей различных деталей определяет величину линейных и угловых замыкающих размеров, недопустимые значения которых приводят к нерасчетным режимам смазки, паразитным нагрузкам в сопряжениях и циркуляции мощными в кинематических контурах. Эти явления выбывают снижение послеремонтной наработки агрегатов и перерасход топлива и масла.

СПИСОК ЛИТЕРАТУРЫ

Ремонт автомобилей. Под. Ред. Румянцева С.И..М. Транспорт, 1981

Суханов Б.Н. и др. Техническое обслуживание и ремонт автомобилей. Пособие по дипломному и курсовому проектированию. М. Транспорт, 1985

Справочник технолога авторемонтного производства. Под. Ред. Малышева А.Г., Транспорт 1977

Ремонт автомобилей и двигателей: Учеб. для студ. сред. проф. учеб. заведений/ В.И. Карагодин, Н.Н. Митрохин. М.: Академия, 2002. -496с.

Методические указания по ремонту автомобилей и двигателей., Н.Новгород, 1993

ДЕФЕКТЫ КЛАПАНА

Поз.

Дефекты

Допустимые размеры (мм)

1

2

3

Износ, риски и раковины на рабочей фаске клапана:

впускного

выпускного

Износ стержня клапана:

впускного

выпускного

Износ на торце стержня

Браковать при «а» менее:

2,0

2,5

11,0

11,0

Браковать при «б» менее 138,0






Информация 







© Центральная Научная Библиотека